β-Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis.

نویسندگان

  • Michael D Thompson
  • Akshata Moghe
  • Pamela Cornuet
  • Rebecca Marino
  • Jianmin Tian
  • Pengcheng Wang
  • Xiaochao Ma
  • Marc Abrams
  • Joseph Locker
  • Satdarshan P Monga
  • Kari Nejak-Bowen
چکیده

Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β-catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver-specific β-catenin knockout mice and wild-type littermates were subjected to cholestatic injury through bile duct ligation or short-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β-catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β-catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β-catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β-catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β-catenin expression during cholestatic injury reduces β-catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. CONCLUSION We have identified an FXR/β-catenin interaction whose modulation through β-catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955-971).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benefit of farnesoid X receptor inhibition in obstructive cholestasis.

The nuclear hormone receptors farnesoid X receptor (FXR) and pregnane X receptor have been implicated in regulating bile acid, lipid, carbohydrate, and xenobiotic metabolism. Bile duct ligation was used to increase endogenous bile acids and evaluate the roles of these receptors in modulating cholestatic liver injury. FXR knockout (KO) mice were found to be protected from obstructive cholestasis...

متن کامل

Regulation of the human bile acid UDP-glucuronosyltransferase 1A3 by the farnesoid X receptor and bile acids.

BACKGROUND & AIMS Cholestasis is a serious complication of many liver diseases leading to increased serum bile acids (BA) and their conjugates. Chenodeoxycholic (CDCA) acid is a substrate of the human hepatic UDP-glucuronosyltransferase (UGT) 1A3. UGT1A3 may, therefore, be a BA-inducible gene relevant to BA regulation. METHODS BA and human bile were used to induce UGT1A3 in HepG2 cells. Genom...

متن کامل

Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk.

The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectro...

متن کامل

Bile acids induce hepatic differentiation of mesenchymal stem cells

Mesenchymal stem cells (MSC) have the potential to differentiate into multiple cell lineages and their therapeutic potential has become obvious. In the liver, MSC are represented by stellate cells which have the potential to differentiate into hepatocytes after stimulation with growth factors. Since bile acids can promote liver regeneration, their influence on liver-resident and bone marrow-der...

متن کامل

Hepatocyte specific expression of an oncogenic variant of β-catenin results in cholestatic liver disease

BACKGROUND The Wnt/β-catenin signaling pathway plays a crucial role in embryonic development, tissue homeostasis, wound healing and malignant transformation in different organs including the liver. The consequences of continuous β-catenin signaling in hepatocytes remain elusive. RESULTS Livers of Ctnnb1CA hep mice were characterized by disturbed liver architecture, proliferating cholangiocyte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hepatology

دوره 67 3  شماره 

صفحات  -

تاریخ انتشار 2018